1. Measurement method for input impedance

Impedance is represented by the ratio of the current variation ΔI to the voltage variation ΔV.

$$Z = \frac{\Delta V}{\Delta I} \ [\Omega]$$

The variation in the input bias current is measured against the variation in the input common-mode voltage range.

The input bias current is not measured with a voltage follower, but by using the Null Amp method (refer to the measurement circuit diagram in the data sheet).
2. Measurement method for output impedance

Impedance is represented by the ratio of the current variation ΔI to the voltage variation ΔV.

$$Z = \frac{\Delta V}{\Delta I} [\Omega]$$

In a voltage follower configuration, the variation in the output voltage is measured by changing the output source and sink currents. In some output circuit configurations, the impedance may be different between the source and sink sides. Therefore, the variation in the output voltage should be checked during both the output current sourcing and sinking.

3. Supplementary

The contents above describe the input and output impedance to direct current or low frequencies. When a negative feedback is applied on an op-amp, the output impedance of the op-amp is compressed by its open loop gain. Therefore, the output impedance is reduced to a very small value at a low frequency. In the high frequency region, the output impedance increases as the open loop gain of the op-amp is attenuated with frequency at a slope of -6 dB/OCT.
Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System
http://www.rohm.com/contact/