Voltage Detector Circuit Collection

(Circuit Applications)

<table>
<thead>
<tr>
<th>Voltage Detector ICs</th>
<th>G Series</th>
<th>FVE Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD48 □ □</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BD52 □ □</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BD45 □ □</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BU48 □ □</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BU49 □ □</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BU42 □ □</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BD47 □ □</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voltage Detector ICs</th>
<th>G Series</th>
<th>FVE Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD49 □ □</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BD53 □ □</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BD46 □ □</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BU48 □ □</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BU49 □ □</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BU42 □ □</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BU43 □ □</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contents

<table>
<thead>
<tr>
<th>Voltage Detector ICs</th>
<th>G/FVE Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD48 □ □</td>
<td></td>
</tr>
<tr>
<td>BD52 □ □</td>
<td></td>
</tr>
<tr>
<td>BD45 □ □</td>
<td></td>
</tr>
<tr>
<td>BU48 □ □</td>
<td></td>
</tr>
<tr>
<td>BU42 □ □</td>
<td></td>
</tr>
<tr>
<td>BD47 □ □</td>
<td></td>
</tr>
<tr>
<td>BD49 □ □</td>
<td></td>
</tr>
<tr>
<td>BD53 □ □</td>
<td></td>
</tr>
<tr>
<td>BD46 □ □</td>
<td></td>
</tr>
<tr>
<td>BU49 □ □</td>
<td></td>
</tr>
<tr>
<td>BU43 □ □</td>
<td></td>
</tr>
</tbody>
</table>

- BD48 □ □ G/FVE Series P2
- BD52 □ □ G/FVE Series P4
- BD45 □ □ G Series P6
- BU48 □ □ G/F/FVE Series P8
- BU42 □ □ G/F/FVE Series P9
- BD47 □ □ G Series P11
1) Examples of a common power supply detection reset circuit.

Application examples of BD48 □□ G/FVE series (Open Drain output type) and BD49 □□ G/FVE series (CMOS output type) are shown below.

CASE1:
The power supply of the microcontroller (VDD2) differs from the power supply of the reset detection (VDD1). Use the open drain output type (BD48 □□ G/FVE) attached a load resistance (RL) between the output and VDD2. (As shown Fig.1)

CASE2:
The power supply of the microcontroller (VDD1) is same as the power supply of the reset detection (VDD1). Use CMOS output type (BD49 □□ G/FVE) or open drain output type (BD48 □□ G/FVE) attached a load resistance (RL) between the output and Vdd1. (As shown Fig.2)

When a capacitance CL for noise filtering is connected to the VOUT pin (the reset signal input terminal of the microcontroller), please take into account the waveform of the rise and fall of the output voltage (VOUT).

2) The following is an example of a circuit application in which an OR connection between two types of detection voltages resets the microcontroller.

When there are many power supplies of the system, power supplies VDD1 and VDD2 are being monitored separately, and it is necessary to reset the microcomputer, it is possible to use an OR connection on the open drain output type BD48 □□ G/FVE series to pull-up to the desired voltage (VDD3) as shown in Fig.3 and make the output “High” voltage matches the power supply voltage VDD3 of the microcontroller.
3) Examples of the power supply with resistor dividers

In applications where the power supply input terminal (VDD) of an IC with resistor dividers, it is possible that a through current will momentarily flow into the circuit when the output logic switches, resulting in malfunctions (such as output oscillatory state).

(Through-current is a current that momentarily flows from the power supply (VDD) to ground (GND) when the output level switches from “High” to “Low” or vice versa.)

![Diagam 4](image1)

A voltage drop of [the through-current (I1)] \times [input resistor (R2)] is caused by the through current, and the input voltage to descends, when the output switches from “Low” to “High”. When the input voltage decreases and falls below the detection voltage, the output voltage switches from “High” to “Low”. At this time, the through-current stops flowing through output “Low”, and the voltage drop is eliminated. As a result, the output switches from “Low” to “High”, which again causes the through current to flow and the voltage drop. This process is repeated, resulting in oscillation.

![Diagam 5](image2)

Fig. 4

Fig. 5 Current Consumption vs. Power Supply Voltage
1) Examples of a common power supply detection reset circuit

Case 1:
The power supply of the microcontroller (VDD2) differs from the power supply of the reset detection (VDD1). Use the open drain output type (BD52 G/FVE) attached a load resistance (RL) between the output and VDD2. (As shown Fig.6)

Case 2:
The power supply of the microcontroller (VDD1) is same as the power supply of the reset detection (VDD1). Use CMOS output type (BD53 G/FVE) or open drain output type (BD52 G/FVE) attached a load resistance (RL) between the output and VDD1. (As shown Fig.7)

When a capacitance CL for noise filtering is connected to the VOUT pin (the reset signal input terminal of the microcontroller), please take into account the waveform of the rise and fall of the output voltage (VOUT).

2) The following is an example of a circuit application in which an OR connection between two types of detection voltages resets the microcontroller.

When there are many power supplies of the system, power supplies VDD1 and VDD2 are being monitored separately, and it is necessary to reset the microcomputer, it is possible to use an OR connection on the open drain output type BD52 G/FVE series to pull-up to the desired voltage (VDD3) as shown in Fig.8 and make the output “High” voltage matches the power supply voltage VDD3 of the microcontroller.
3) Examples of the power supply with resistor dividers

In applications where the power supply input terminal (VDD) of an IC with resistor dividers, it is possible that a through current will momentarily flow into the circuit when the output logic switches, resulting in malfunctions (such as output oscillatory state).

(Through-current is a current that momentarily flows from the power supply (VDD) to ground (GND) when the output level switches from “High” to “Low” or vice versa.)

A voltage drop of $[\text{through-current (I1)}] \times [\text{input resistor (R2)}]$ is caused by the through current, and the input voltage to descents, when the output switches from “Low” to “High”. When the input voltage decreases and falls below the detection voltage, the output voltage switches from “High” to “Low”. At this time, the through-current stops flowing through output “Low”, and the voltage drop is eliminated. As a result, the output switches from “Low” to “High”, which again causes the through current to flow and the voltage drop. This process is repeated, resulting in oscillation.

* This data is for reference only.
 The figures will vary with the application, so please confirm actual operating conditions before use.
1) Examples of a common power supply detection reset circuit.

Application examples of BD45□□□G series (Open Drain output type) and BD46□□□G series (CMOS output type) are shown below.

CASE1:
The power supply of the microcontroller (VDD2) differs from the power supply of the reset detection (VDD1). Use the open drain output type (BD45□□□G) attached a load resistance (RL) between the output and VDD2. (As shown Fig.11)

CASE2:
The power supply of the microcontroller (VDD1) is same as the power supply of the reset detection (VDD1). Use CMOS output type (BD46□□□G) or open drain output type (BD45□□□G) attached a load resistance (RL) between the output and VDD1. (As shown Fig.12)

When a capacitance CL for noise filtering is connected to the VOUT pin (the reset signal input terminal of the microcontroller), please take into account the waveform of the rise and fall of the output voltage (VOUT).

2) The following is an example of a circuit application in which an OR connection between two types of detection voltages resets the microcontroller.

When there are many power supplies of the system, power supplies VDD1 and VDD2 are being monitored separately, and it is necessary to reset the microcomputer, it is possible to use an OR connection on the open drain output type BD45□□□G series to pull-up to the desired voltage (VDD3) as shown in Fig.13 and make the output “High” voltage matches the power supply voltage VDD3 of the microcontroller.
3) Examples of the power supply with resistor dividers

In applications where the power supply input terminal (VDD) of an IC with resistor dividers, it is possible that a through current will momentarily flow into the circuit when the output logic switches, resulting in malfunctions (such as output oscillatory state).

(Through-current is a current that momentarily flows from the power supply (VDD) to ground (GND) when the output level switches from “High” to “Low” or vice versa.)

A voltage drop of \([\text{through-current (I1)}] \times [\text{input resistor (R2)}]\) is caused by the through current, and the input voltage to descends, when the output switches from “Low” to “High”. When the input voltage decreases and falls below the detection voltage, the output voltage switches from “High” to “Low”. At this time, the through-current stops flowing through output “Low”, and the voltage drop is eliminated. As a result, the output switches from “Low” to “High”, which again causes the through current to flow and the voltage drop. This process is repeated, resulting in oscillation.
1) Examples of a common power supply detection reset circuit

Application examples of BU48 G/F/FVE series (Open Drain output type) and BU49 G/F/FVE series (CMOS output type) are shown below.

CASE1:
The power supply of the microcontroller (VDD2) differs from the power supply of the reset detection (VDD1). Use the Open Drain Output Type (BU48 G/FVE) attached a load resistance (RL) between the output and VDD2. (As shown Fig.16)

CASE2:
The power supply of the microcontroller (VDD1) is same as the power supply of the reset detection (VDD1). Use CMOS output type (BU49 G/FVE) or Open Drain Output Type (BU48 G/FVE) attached a load resistance (RL) between the output and VDD1. (As shown Fig.17)

When a capacitance CL for noise filtering or setting the output delay time is connected to the Vout pin (the reset signal input terminal of the microcontroller), please take into account the waveform of the rise and fall of the output voltage (Vout).

2) Examples of the power supply with resistor dividers

In applications where the power supply input terminal (VDD) of an IC with resistor dividers, it is possible that a through-current will momentarily flow into the circuit when the output logic switches, resulting in malfunctions (such as output oscillatory state).

(Through-current is a current that momentarily flows from the power supply (VDD) to ground (GND) when the output level switches from "High" to "Low" or vice versa.)

Consider the use of BD48 G/F when the power supply input it with resistor dividers.
1) Examples of a common power supply detection reset circuit

Application examples of BU42□□G/F/FVE series (Open Drain output type) and BU43□□G/F/FVE series (CMOS output type) are shown below.

CASE1:
The power supply of the microcontroller (Vdd2) differs from the power supply of the reset detection (Vdd1). Use the Open Drain Output Type (BU42□□G/FVE) attached a load resistance (RL) between the output and Vdd2. (As shown Fig.19)

CASE2:
The power supply of the microcontroller (Vdd1) is same as the power supply of the reset detection (Vdd1). Use CMOS output type (BU43□□G/FVE) or Open Drain Output Type (BU42□□G/FVE) attached a load resistance (RL) between the output and Vdd1. (As shown Fig.20)

When a capacitance CL for noise filtering is connected to the Vout pin (the reset signal input terminal of the microcontroller), please take into account the waveform of the rise and fall of the output voltage (Vout).
2) Examples of the power supply with resistor dividers

In applications where the power supply input terminal (VDD) of an IC with resistor dividers, it is possible that a through current will momentarily flow into the circuit when the output logic switches, resulting in malfunctions (such as output oscillatory state).

(Through-current is a current that momentarily flows from the power supply (VDD) to ground (GND) when the output level switches from “High” to “Low” or vice versa.)

A voltage drop of \[\text{through-current (I1)} \times \text{input resistor (R2)}\] is caused by the through current, and the input voltage to descends, when the output switches from “Low” to “High”. When the input voltage decreases and falls below the detection voltage, the output voltage switches from “High” to “Low”. At this time, the through-current stops flowing through output “Low”, and the voltage drop is eliminated. As a result, the output switches from “Low” to “High”, which again causes the through current to flow and the voltage drop. This process is repeated, resulting in oscillation.

Consider the use of BU42□□ when the power supply input it with resistor dividers.

* This data is for reference only.
 The figures will vary with the application, so please confirm actual operating conditions before use.
BD47□□G Series

1) The following is an example of an application circuit using Reset IC for normal power supply detection. BD47□□G series requires a pull up resistor on the output terminal. The pull up resistor value should be decided. As the application with enough confirmation of power supply level and output current capability. When a capacitor has been inserted into the output terminal to delay the output time or to remove noise, the output will be slower during starting or stopping. Please be careful to select the appropriate pull up resistors, output current and capacitor when inserting a bypass capacitor between input and GND. Please be aware that if an extremely large capacitor is used, the response time will become excessively slow.

![Fig.23](image1)

2) The following shows an example of adding delay time to a reset signal. It is possible to set the delay time using the capacitor CL and the resistor RL connected to the output terminal as shown below. At VCC start up, CL will be charged by RL. The CL and RL time constants and the threshold voltage of the Reset terminal determine the charge delay time. When VCC is decreased, CL is discharged through the Reset IC. The sum of the respective times plus the delay time of the IC itself becomes the reset signal delay time.

![Fig.24](image2)
Notice

Notes

No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co., Ltd.

The content specified herein is subject to change for improvement without notice.

The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request.

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products specified in this document are not designed to be radiation tolerant.

While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/