SCT2750NY
N-channel SiC power MOSFET

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain - Source voltage</td>
<td>V_{DSS}</td>
<td>1700</td>
<td>V</td>
</tr>
<tr>
<td>Continuous drain current</td>
<td>I_D</td>
<td>5.9</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed drain current</td>
<td>$I_{D,pulse}$</td>
<td>14</td>
<td>A</td>
</tr>
<tr>
<td>Gate - Source voltage (DC)</td>
<td>V_{GSS}</td>
<td>–6 to 22</td>
<td>V</td>
</tr>
<tr>
<td>Gate - Source surge voltage</td>
<td>$V_{GSS,surge}$</td>
<td>–10 to 26</td>
<td>V</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_D</td>
<td>57</td>
<td>W</td>
</tr>
<tr>
<td>Junction temperature</td>
<td>T_J</td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>Range of storage temperature</td>
<td>T_{stg}</td>
<td>–55 to +175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Features
1) Low on-resistance
2) Fast switching speed
3) Long creepage distance with no center lead
4) Simple to drive
5) Pb-free lead plating ; RoHS compliant

Application
- Auxiliary power supplies
- Switch mode power supplies

Outline
TO-268-2L

Inner circuit
1) Gate
2) Drain
3) Source

*1 Body Diode

Packaging specifications
<table>
<thead>
<tr>
<th>Type</th>
<th>Packing</th>
<th>Embossed tape</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reel size (mm)</td>
<td>330</td>
<td></td>
</tr>
<tr>
<td>Tape width (mm)</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Basic ordering unit (pcs)</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>Taping code</td>
<td>TB</td>
<td></td>
</tr>
<tr>
<td>Marking</td>
<td>SCT2750NY</td>
<td></td>
</tr>
</tbody>
</table>

Absolute maximum ratings ($T_a = 25°C$)

www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
Thermal resistance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal resistance, junction - case</td>
<td>R_{thJC}</td>
<td>-</td>
<td>2.04</td>
</tr>
</tbody>
</table>

Electrical characteristics ($T_a = 25^\circ C$)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Values</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain - Source breakdown voltage</td>
<td>V_{BRDSS}</td>
<td>$V_{GS} = 0V, I_D = 1mA$</td>
<td>1700</td>
<td>-</td>
</tr>
<tr>
<td>Zero gate voltage drain current</td>
<td>I_{DSS}</td>
<td>$V_{DS} = 1700V, V_{GS} = 0V$</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_j = 25^\circ C$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_j = 150^\circ C$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate - Source leakage current</td>
<td>I_{GSS+}</td>
<td>$V_{GS} = +22V, V_{DS} = 0V$</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gate - Source leakage current</td>
<td>I_{GSS-}</td>
<td>$V_{GS} = -6V, V_{DS} = 0V$</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gate threshold voltage</td>
<td>$V_{GS \ \text{th}}$</td>
<td>$V_{DS} = V_{GS}, I_D = 0.63mA$</td>
<td>1.6</td>
<td>2.8</td>
</tr>
</tbody>
</table>

*1 Limited only by maximum temperature allowed.
*2 PW ≤ 10µs, Duty cycle ≤ 1%
*3 Example of acceptable Vgs waveform

*4 Pulsed
Electrical characteristics (Ta = 25°C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Values</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static drain - source on - state resistance</td>
<td>$R_{DS(on)}$</td>
<td>$V_{GS} = 18V, I_D = 1.7A$</td>
<td>- 750 975</td>
<td>mΩ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_J = 25°C$</td>
<td>- 1088</td>
<td></td>
</tr>
<tr>
<td>Gate input resistance</td>
<td>R_G</td>
<td>$f = 1MHz, open drain$</td>
<td>- 49</td>
<td>Ω</td>
</tr>
<tr>
<td>Transconductance</td>
<td>g_{fs}</td>
<td>$V_{DS} = 10V, I_D = 1.7A$</td>
<td>- 0.6</td>
<td>S</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{iss}</td>
<td>$V_{GS} = 0V$</td>
<td>- 275</td>
<td>pF</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{oss}</td>
<td>$V_{DS} = 800V$</td>
<td>- 19</td>
<td></td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{rss}</td>
<td>$f = 1MHz$</td>
<td>- 7</td>
<td></td>
</tr>
<tr>
<td>Effective output capacitance, energy related</td>
<td>$C_{o(er)}$</td>
<td>$V_{GS} = 0V$</td>
<td>- 21</td>
<td>pF</td>
</tr>
<tr>
<td>Turn - on delay time</td>
<td>$t_{d(on)}$</td>
<td>$V_{DD} = 500V, I_D = 1.7A$</td>
<td>- 19</td>
<td>ns</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_r</td>
<td>$V_{GS} = 18V/0V$</td>
<td>- 24</td>
<td></td>
</tr>
<tr>
<td>Turn - off delay time</td>
<td>$t_{d(off)}$</td>
<td>$RL = 294Ω$</td>
<td>- 41</td>
<td></td>
</tr>
<tr>
<td>Fall time</td>
<td>t_f</td>
<td>$R_G = 0Ω$</td>
<td>- 63</td>
<td></td>
</tr>
<tr>
<td>Turn - on switching loss</td>
<td>E_{on}</td>
<td>$V_{DD} = 800V, I_D=1.7A$</td>
<td>- 76</td>
<td>μJ</td>
</tr>
<tr>
<td>Turn - off switching loss</td>
<td>E_{off}</td>
<td>E_{on} includes diode reverse recovery</td>
<td>- 33</td>
<td></td>
</tr>
</tbody>
</table>

Gate Charge characteristics (Ta = 25°C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Values</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total gate charge</td>
<td>Q_g</td>
<td>$V_{DD} = 500V$</td>
<td>- 17</td>
<td>nC</td>
</tr>
<tr>
<td>Gate - Source charge</td>
<td>Q_{gs}</td>
<td>$I_D = 1.5A$</td>
<td>- 5</td>
<td></td>
</tr>
<tr>
<td>Gate - Drain charge</td>
<td>Q_{gd}</td>
<td>$V_{GS} = 18V$</td>
<td>- 6.5</td>
<td></td>
</tr>
<tr>
<td>Gate plateau voltage</td>
<td>$V_{(plateau)}$</td>
<td>$V_{DD} = 500V, I_D = 1.5A$</td>
<td>- 11.0</td>
<td>V</td>
</tr>
</tbody>
</table>
Body diode electrical characteristics (Source-Drain) ($T_a = 25^\circ$C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Values</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverse diode continuous, forward current</td>
<td>I_S</td>
<td>$T_c = 25^\circ$C</td>
<td>-</td>
<td>5.9</td>
</tr>
<tr>
<td>Inverse diode direct current, pulsed</td>
<td>I_{SM}</td>
<td>-</td>
<td>-</td>
<td>14</td>
</tr>
<tr>
<td>Forward voltage</td>
<td>V_{SD}</td>
<td>$V_{GS} = 0V, I_S = 1.7A$</td>
<td>-</td>
<td>4.3</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_r</td>
<td>$I_F = 1.7A, V_R = 800V, di/dt = 290A/\mu s$</td>
<td>-</td>
<td>26</td>
</tr>
<tr>
<td>Reverse recovery charge</td>
<td>Q_r</td>
<td>-</td>
<td>-</td>
<td>18</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I_{rm}</td>
<td>-</td>
<td>-</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Typical Transient Thermal Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{th1}</td>
<td>243m</td>
<td>K/W</td>
</tr>
<tr>
<td>R_{th2}</td>
<td>1529m</td>
<td></td>
</tr>
<tr>
<td>R_{th3}</td>
<td>268m</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{th1}</td>
<td>352µ</td>
<td>Ws/K</td>
</tr>
<tr>
<td>C_{th2}</td>
<td>1.57m</td>
<td></td>
</tr>
<tr>
<td>C_{th3}</td>
<td>68.7m</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram of thermal characteristics](image)
Electrical characteristic curves

Fig. 1 Power Dissipation Derating Curve

- Power Dissipation: \(P_D \) [W]
- Drain Current: \(I_D \) [A]
- Junction Temperature: \(T_j \) [°C]
- Drain - Source Voltage: \(V_{DS} \) [V]

Fig. 2 Maximum Safe Operating Area

- Operation in this area is limited by \(R_{DS(on)} \)
- **Fig. 3 Typical Transient Thermal Resistance vs. Pulse Width**

- Transient Thermal Resistance: \(R_{th} \) [K/W]
- Pulse Width: \(P_W \) [s]
Electrical characteristic curves

Fig. 4 Typical Output Characteristics(I)

- Drain Current: I_D [A]
- Drain - Source Voltage: V_{DS} [V]

Fig. 5 Typical Output Characteristics(II)

- Drain Current: I_D [A]
- Drain - Source Voltage: V_{DS} [V]

Fig. 6 $T_J = 150°C$ Typical Output Characteristics(I)

- Drain Current: I_D [A]
- Drain - Source Voltage: V_{DS} [V]

Fig. 7 $T_J = 150°C$ Typical Output Characteristics(II)

- Drain Current: I_D [A]
- Drain - Source Voltage: V_{DS} [V]
Electrical characteristic curves

Fig. 8 Typical Transfer Characteristics (I)

Gate - Source Voltage : V_{GS} [V]

Drain Current : I_D [A]

- $V_{DS} = 10V$
- Pulsed

- $T_a = 175^\circ C$
- $T_a = 125^\circ C$
- $T_a = 75^\circ C$
- $T_a = 25^\circ C$
- $T_a = -25^\circ C$

Fig. 9 Typical Transfer Characteristics (II)

Gate - Source Voltage : V_{GS} [V]

Drain Current : I_D [A]

- $V_{DS} = 10V$
- Pulsed

- $T_a = 175^\circ C$
- $T_a = 125^\circ C$
- $T_a = 75^\circ C$
- $T_a = 25^\circ C$
- $T_a = -25^\circ C$

Fig. 10 Gate Threshold Voltage vs. Junction Temperature

Gate Threshold Voltage : $V_{GS(th)}$ [V]

Junction Temperature : T_j [^\circ C]

$V_{GS} = V_{DS}$

$I_D = 0.63mA$

Fig. 11 Transconductance vs. Drain Current

Transconductance : g_{fs} [S]

Drain Current : I_D [A]

- $V_{DS} = 10V$
- Pulsed

- $T_a = 175^\circ C$
- $T_a = 125^\circ C$
- $T_a = 75^\circ C$
- $T_a = 25^\circ C$
- $T_a = -25^\circ C$
Electrical characteristic curves

Fig. 12 Static Drain - Source On-State Resistance vs. Gate Source Voltage

- Static Drain - Source On-State Resistance: $R_{DS(on)}$ [Ω]
- Gate - Source Voltage: V_{GS} [V]

- $I_D = 1.7A$
- $I_D = 3.4A$
- $T_A = 25ºC$
- $V_{GS} = 18V$
- Pulsed

Fig. 13 Static Drain - Source On-State Resistance vs. Junction Temperature

- Static Drain - Source On-State Resistance: $R_{DS(on)}$ [Ω]
- Junction Temperature: T_J [ºC]

- $I_D = 1.7A$
- $I_D = 3.4A$
- $V_{GS} = 18V$
- Pulsed

Fig. 14 Static Drain - Source On-State Resistance vs. Drain Current

- Static Drain - Source On-State Resistance: $R_{DS(on)}$ [Ω]
- Drain Current: I_D [A]

- $T_A = -25ºC$
- $T_A = 25ºC$
- $T_A = 75ºC$
- $T_A = 125ºC$
- $T_A = 175ºC$
- $V_{GS} = 18V$
- Pulsed
● Electrical characteristic curves

Fig. 15 Typical Capacitance vs. Drain - Source Voltage

Fig. 16 Coss Stored Energy

Fig. 17 Switching Characteristics

Fig. 18 Dynamic Input Characteristics

1. Capacitance: C [pF]
2. Drain - Source Voltage: V_{DS} [V]
3. Switching Time: t [ns]
4. Drain Current: I_D [A]
5. Total Gate Charge: Q_g [nC]
6. Gate - Source Voltage: V_{GS} [V]
7. Coss Stored Energy: E_{OSS} [μJ]

- $T_a = 25^\circ C$
- $f = 1 MHz$
- $V_{DS} = 0 V$
- $V_{DD} = 500 V$
- $V_{GS} = 18 V$
- $R_G = 0 \Omega$
- Pulsed
● Electrical characteristic curves

Fig. 19 Typical Switching Loss vs. Drain - Source Voltage

Switching Energy: \(E \) [\(\mu \text{J} \)]

Drain - Source Voltage: \(V_{\text{DS}} \) [V]

- \(T_a = 25^\circ\text{C} \)
- \(I_D = 1.7\text{A} \)
- \(V_{\text{GS}} = 18\text{V}/0\text{V} \)
- \(R_G = 0\Omega \)
- \(L = 2\text{mH} \)

Fig. 20 Typical Switching Loss vs. Drain Current

Switching Energy: \(E \) [\(\mu \text{J} \)]

Drain Current: \(I_D \) [A]

- \(T_a = 25^\circ\text{C} \)
- \(V_{\text{DD}} = 800\text{V} \)
- \(V_{\text{GS}} = 18\text{V}/0\text{V} \)
- \(R_G = 0\Omega \)
- \(L = 2\text{mH} \)

Fig. 21 Typical Switching Loss vs. External Gate Resistance

Switching Energy: \(E \) [\(\mu \text{J} \)]

External Gate Resistance: \(R_G \) [\(\Omega \)]

- \(T_a = 25^\circ\text{C} \)
- \(V_{\text{DD}} = 800\text{V} \)
- \(I_D = 1.7\text{A} \)
- \(V_{\text{GS}} = 18\text{V}/0\text{V} \)
- \(L = 2\text{mH} \)
Electrical characteristic curves

Fig. 22 Inverse Diode Forward Current vs. Source - Drain Voltage

- Graph shows Inverse Diode Forward Current (I_S [A]) vs. Source - Drain Voltage (V_SD [V])
- Curves for different temperatures: Ta = 175°C, Ta = 125°C, Ta = 75°C, Ta = 25°C, Ta = -25°C
- Key parameters: VGS = 0V, Pulsed

Fig. 23 Reverse Recovery Time vs. Inverse Diode Forward Current

- Graph shows Reverse Recovery Time (t_r [ns]) vs. Inverse Diode Forward Current (I_S [A])
- Key parameters: Ta = 25°C, di/dt = 290A/µs, VR = 800V, VGS = 0V, Pulsed
● Measurement circuits

Fig.1-1 Switching Time Measurement Circuit

Fig.1-2 Switching Waveforms

Fig.2-1 Gate Charge Measurement Circuit

Fig.2-2 Gate Charge Waveform

Fig.3-1 Switching Energy Measurement Circuit

Fig.3-2 Switching Waveforms

Fig.4-1 Reverse Recovery Time Measurement Circuit

Fig.4-2 Reverse Recovery Waveform
Notes

1) The information contained herein is subject to change without notice.

2) Before you use our Products, please contact our sales representative and verify the latest specifications:

3) Although ROHM is continuously working to improve product reliability and quality, semiconductors can break down and malfunction due to various factors. Therefore, in order to prevent personal injury or fire arising from failure, please take safety measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. ROHM shall have no responsibility for any damages arising out of the use of our Products beyond the rating specified by ROHM.

4) Examples of application circuits, circuit constants and any other information contained herein are provided only to illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

5) The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM or any other parties. ROHM shall have no responsibility whatsoever for any dispute arising out of the use of such technical information.

6) The Products specified in this document are not designed to be radiation tolerant.

7) For use of our Products in applications requiring a high degree of reliability (as exemplified below), please contact and consult with a ROHM representative: transportation equipment (i.e. cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, and power transmission systems.

8) Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters.

9) ROHM shall have no responsibility for any damages or injury arising from non-compliance with the recommended usage conditions and specifications contained herein.

10) ROHM has used reasonable care to ensure the accuracy of the information contained in this document. However, ROHM does not warrant that such information is error-free, and ROHM shall have no responsibility for any damages arising from any inaccuracy or misprint of such information.

11) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. For more details, including RoHS compatibility, please contact a ROHM sales office. ROHM shall have no responsibility for any damages or losses resulting from non-compliance with any applicable laws or regulations.

12) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.

13) This document, in part or in whole, may not be reprinted or reproduced without prior consent of ROHM.

Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/
General Precaution

1. Before you use our Products, you are requested to carefully read this document and fully understand its contents. ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any ROHM's Products against warning, caution or note contained in this document.

2. All information contained in this document is current as of the issuing date and subject to change without any prior notice. Before purchasing or using ROHM's Products, please confirm the latest information with a ROHM sales representative.

3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors or concerning such information.