Diodes

Quality assurance and reliability

ROHM product quality

We put quality first "Quality" here refers to both the integrity of the products that we manufacture and price and timely delivery of those products to our customers. Although we put the utmost effort into each one of these factors, we give particular emphasis to the integrity of the product.

We are striving to minimize defects in our semiconductor devices both at the initial defect stage and at the incidental defect stage. The incidental defect rate is approaching a constant value. Most device manufacturers are approaching the same level in products where there are no major design problems. Therefore, we are making supreme efforts to bring semiconductor devices to our customers which have already been appropriately screened. By eliminating devices with hidden defects, we have reduced our customer-perceived defect rate λ i to a level as close as possible to the incidental defect rate λ r. These efforts insure that our customers are receiving products with a minimum defect rate. Our products have earned a reputation for their high reliability with our customers.

•Quality assurance system

Our quality assurance system requires testing at each major step in the manufacturing process. In addition, precise inspections are conducted after final assembly. For example, after the wafers are processed, the electrical characteristics of the wafers are measured to gauge the accuracy of each process. A short-term endurance test is carried out on each wafer. These tests allow us to assure the reliability of the wafers. After the diodes are assembled, we ensure the quality of all products by conducting multiple measurements at a high degree of precision. Fig. 1 shows our system for quality assurance.

Quality assurance activities

(1) Education and training

In accordance with the fundamental goals of our company, we educate and train all our personnel in every division so they can produce reliable, quality products. Particular emphasis is placed on quality control, production control, research and design, purchasing, manufacturing, and management.

(2) Inspection and calibration

All measuring devices used in manufacturing process undergo periodic inspection and recalibration based on our own critical measuring device standards. (3) Manufacturing control

ROHM has developed internal standards to control materials testing, manufacturing conditions, inspection methods, and other operations. Additionally, dust, humidity and temperature are strictly controlled in the manufacturing areas, in accordance with ROHM standards.

Reliability testing

In order to verify the reliability of the finished products and the state of the quality control program for the entire manufacturing process, we periodically carry out reliability test on the products that we manufacture.

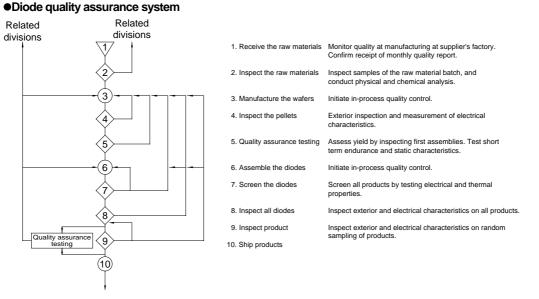

		Table 1		
No.	Test	Test conditions	Tolerance	Related standards
1	Solderability	Immersion for 5 seconds in 230°C solder bath	Length of solder on lead must be > 1 mm	JIS C 7021 A-2
2	Tensile strength of terminal lead	Pull terminal lead with 500g load for 5 seconds		JIS C 7021 A-11
3	Solder heat resistance	Immerse 1.5mm of terminal lead in 350°C solder bath		JIS C 7021 A-1
4	Boiling	5 hours at 100°C		
5	Thermal cycling	20		JIS C 7021 A-4
6	Thermal shock	15		JIS C 7021 A-3
7	Pressure cooker	125°C and atmospheric pressure of 2 at relative humidity of 85%, for 4 hours	$ \begin{array}{c} \textcircled{1} \\ \forall F < U^* \times 1.1 \\ \textcircled{2} \\ R < U^* \times 2.0 \\ \textcircled{3} \\ \Delta V_2 : 2\% \\ \textcircled{4} \\ No \\ mechanical \\ damage \end{array} $	
8	Exposure to high temperature and humidity	Ta=85°C RH=85%, for 1,000 hours		JIS C 7021 B-11
9	Aging test at high temperature	Ta=Tstg (Max.), for 1,000 hours		JIS C 7021 B-10
10	Small signal diode load life	Ta=25°C, I⊧=lo for 1.5 hours on, 0.5 hours off, repeated over 1,000 hours		JIS C 7021
11	Constant voltage diode continuous operation	Ta=25°C Pd=Pd (Max.), for 1,000 hours		JIS C 7021 B-2
12	Rectifier diode continuous operation	l⊧=lo Ta≤Tj (Max.), for 1,000 hours		JIS C 7021 B-13
13	Variable capacitance diode, high temperature reverse bias life	VR=VRM Ta≤Tj (Max.), for 1,000 hours		JIS C 7021 B-3

Table 1

* U : Upper limit of standard

Quality assurance and reliability

Diodes

Predicting reliability

One of the most frequently used methods for predicting reliability of electronic components is described in MILHDBK-217F, "Prediction of Reliability in Electronic Devices". For your reference, we will summarize the section related to semiconductor devices.

•Predicting the failure rate in discrete semiconductor devices

The model shown here predicts the failure rate of low-frequency diodes. This model predicts the failure rate (λp) for discrete semiconductor devices using the formula :

 $\lambda p = \lambda b \times \pi T \times \pi S \times \pi C \times \pi Q \times \pi E / 10^6 hr$

where :

 λ b=The basic failure rate shown in Table 2 determined by diode type and application.

 π T=Temperature factor (Tables 3 and 4)

 π S=Electrical stress factor (Table 5)

 π C=Contact structure factor (Table 6)

 π Q=Quality factor (Table 7)

 π E=Environmental factor (Table 8)

Table 2. Basic failure rate model (λb)

Diode type/application	λb
Analog diode, for general use	.0038
Switching diode	.0010
Power rectifier, for fast recovery	.069
Power rectifier, Schottky power diode	.0030
High-voltage, multi-layered power rectifier	.005 / junction
Transient suppressor/varistor diode	.0013
Current regulator	.0034
Voltage regulator and standard voltage application (avalanche and Zener diodes)	.0020

Diodes

Tj (°C)	π T	Tj (°C)	πτ
25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100	1.0 1.1 1.2 1.4 1.5 1.6 1.8 2.0 2.1 2.3 2.5 2.7 3.0 3.2 3.4 3.7	105 110 115 120 125 130 135 140 145 155 160 165 170 175	3.9 4.2 4.5 4.8 5.1 5.4 5.7 6.0 6.4 6.7 7.1 7.5 7.9 8.3 8.7
$\pi \tau = \exp\left(-1925\left(\frac{1}{Tj+273} - \frac{1}{298}\right)\right)$ Tj=Junction temperature (°C)			

Table 3. Temperature factor ($\pi\tau$) (Applicable to voltage regulator, standard voltage application, and current regulator diodes)

Table 4. Temperature factor $(\pi\tau)$ (Applicable to analog for general use, switching, fast recovery, power rectifier, and transient suppressor diodes)

Tj (°C)	πτ	Tj (°C)	πτ
< 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100	1.0 1.2 1.4 1.6 1.9 2.2 2.6 3.0 3.4 3.9 4.4 5.0 5.7 6.4 7.2 8.0	105 110 115 120 125 130 135 140 145 150 155 160 165 170 175	9.0 10 11 12 14 15 16 18 20 21 23 25 28 30 32
$\pi \tau = exp \left[-3091 \left(\frac{1}{Tj+273} - \frac{1}{298}\right)\right]$ Tj=Junction temperature (°C)			

Table 5. Electrical stress factor (π s)

S, Stress	πs	
5, 511833	1.5	
Transient suppressor, voltage regulator, standard voltage application, and current regulator	1.0	
All others		
Vs≤.30	0.054	
.3 <vs≤.40< td=""><td>0.11</td></vs≤.40<>	0.11	
.4 <vs≤.50< td=""><td>0.19</td></vs≤.50<>	0.19	
.5 <vs≤.60< td=""><td>0.29</td></vs≤.60<>	0.29	
.6 <vs≤.70< td=""><td>0.42</td></vs≤.70<>	0.42	
.7 <vs≤.80< td=""><td>0.58</td></vs≤.80<>	0.58	
.8 <vs≤.90< td=""><td>0.77</td></vs≤.90<>	0.77	
.9 <vs≤.1.0< td=""><td>1.0</td></vs≤.1.0<>	1.0	
For all except transient suppressor, voltage regulator, standard voltage application, and current regulator diodes: $\pi s=0.54$ (Vs≤.3) $\pi s=Vs^{2.43}$ (.3 <vs≤1)< td=""></vs≤1)<>		
Vs=Voltage stress ratio= Constant voltage		
Voltage is diode reverse voltage.		

Table 6. Contact structure factor (πc)

Contact structure	πο
Metal connectors	1.0
Non-metallic connectors and spring-loaded contacts	2.0

Quality factor=2.4 (from MIL-HDBK-217F) Enviroment factor=9.0 (from MIL-HDBK-217F)

Diodes

Table 7. Quality factors (π q)

Quality	πο
JANTXV	0.7
JANTX	1.0
JAN	2.4
Lower quality	5.5
Plastic	8.0

Table 8. Environment factors (π_E)

	Environment	πε
G B G F GM	Ground, benign Ground, fixed Ground, mobile	1.0 6.0 9.0
Ns	Naval, sheltered	9.0
N∪	Naval, unsheltered	19
Aic	Airbone, inhabited, cargo	13
Aif	Airbone, inhabited, fighter	29
Auc	Airbone, uninhabited, cargo	20
Auf	Airbone, uninhabited, fighter	43
Arw	Airbone, rotary winged	24
SF	Space, flight	.50
MF	Missile, free flight	14
M∟	Missile, launch	32
C∟	Cannon, launch	320

•Example of predicted failure rate calculations

[Question]

What would be the Predicted faibure rate for a switching diode (Specifications DO-35 package, TMax.=175°C, P=500mW, quality equivalence : JAN grade, contact structure : non-metallic alloy and spring –loaded contact) operated at a case temperature of 62%, a rated load of 60%, a constant voltage of 30%, and a room temperature of Ta=25°C?

[Calculation]

- (1) Because this is a switching diode, $\lambda b=0.0010$ (based on Table 2).
- (2) P=500mW with a load of 50%, at a case temperature of 55° C.
 - Tj=Tc+*θJCP

=62°C+10°C / W×0.30W=65°C

where $\pi T=3.4$, based on Table 4.

- (3) From Table 5 : πs=0.054
- (4) From Table 6 : πC=2.0
- (5) From Table 7 : πQ=2.4
- (6) From Table 8 : πE=9.0
- (7) $\lambda p = \lambda b \times \pi T \times \pi S \times \pi C \times \pi Q \times \pi E / 10^6$ hours = 0.0079/10⁶ hours = 7.9

 $* \theta_{JC}$ is the junction-to-case thermal resistance of a diode with a case similar to the DO-35 package.

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.

In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.

ROHM